Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Transl Res ; 233: 104-116, 2021 07.
Article in English | MEDLINE | ID: covidwho-1051128

ABSTRACT

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Subject(s)
Acute Lung Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Acids/administration & dosage , Acids/toxicity , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Apoptosis , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Signal Transduction , Stress, Mechanical , Translational Research, Biomedical , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL